Integrated sensor network for monitoring steel corrosion in concrete structures

José Enrique Ramón, José Manuel Gandía-Romero, Manuel Valcuende, Román Bataller

Abstract

Corrosion is one of the main triggering factors affecting the service life and durability of structures. Several methods are used for corrosion studies but electrochemical techniques are the most commonly applied. Corrosion processes monitoring and control by means of non-destructive techniques, such as the implementation of embedded sensors, has been the target of many works.  It is possible to obtain relevant information of structural corrosion processes in real time. This document describes a system including specific equipment and which allows obtaining relevant information about these corrosion processes. This system is formed by a sensor network. There are several types of electrodes, which are distributed throughout the structure under study and a specific equipment developed by the research group, which is used to determine pertinent parameters such as the corrosion potential (Ecorr) and the corrosion density (icorr) by applying sequences of potentiostatic pulses. The system allows to reliably determine the corrosion rate in different areas of the structure. The sensor, due to its configuration, provides information of a specific area of the structure, but on the other hand it is involved in the galvanic events that can occur along the structure by differential aeration, galvanic cells, etc. because the sensor is not isolated from the structure.  This system also procures information of buried and submerged elements. Besides, it is possible to obtain information related to temperature, concrete resistance. The system includes specific potentiometric sensors to monitor chloride access and carbonatation processes.


Keywords

sensor; corrosion; structure; steel

Full Text:

PDF EN

References

Andrade C., Garcés P., Martínez I., Galvanic currents and corrosion rates of reinforcements measured in cells simulating different pitting areas caused by chloride attack in sodium hydroxide, Corrosion Science, 2008, vol. 50, pp. 2959–2964, http://dx.doi.org/10.1016/j.corsci.2008.07.013

Andrade C., Martinez I., Alonso C., Fullea J., New Avanced Electrochemical Techniques for On Site Measurements of Reinforcement Corrosion. Materiales de Construcción, 2001, vol. 51, pp. 263-264.

Badea G.E., Caraban A., Sebesan M., Dzitac S., Cret P., Setel A., Polarisation Measurements Used for Corrosion Rates Determination, Journal of Sustenable Energy, 2010, vol. 1, nº1.

Castillo A., Andrade C., Martínez I., Rebolledo N., Fernández-Troyano L., Ayuso G., Cuervo J., Junquera J., Santana C., Delgado J., Evaluación y monitorización de la durabilidad de las cubiertas del Hipódromo de la Zarzuela de Madrid. Informes de la Construcción, 2011, vol. 63, nº 524, pp. 33-41, http://dx.doi.org/10.3989/ic10.058

Chang Zhen-Tian, Cherry Brian, Marosszeky Marton, Polarisation behaviour of steel bar samples in concrete in seawater. Part 1: Experimental measurement of polarisation curves of steel in concrete, Corrosion Science 2008, 50, pp. 357-364, http://dx.doi.org/10.1016/j.corsci.2007.08.009

Chen Xu, Zhiyuan Li, Weiliang Jin, A New Corrosion Sensor to Determine the Start and Development of Embedded Rebar Corrosion Process at Coastal Concrete, Sensors, 2013, 13, pp. 13258-13275, http://dx.doi.org/10.3390/s131013258

Duffó G., Farina S.B., Development of an embeddable sensor to monitor the corrosion process of new and existing reinforced concrete structures, Construction and Building Materials, 23, 2009, pp. 2746–2751, http://dx.doi.org/10.1016/j.conbuildmat.2009.04.001

Duffó G., Arva E.A., Schulz F.M., Vazquez D.R., Evaluation of the corrosion of a reinforced concrete designed for the construction of an intermediate-level radioactive waste disposal facility, Procedia Materials Science, 2012, 1, pp. 215–221, http://dx.doi.org/10.1016/j.mspro.2012.06.029

Elsener B., Klinhoffer O., Frolund T., Rislund E., Schiegg Y., Bohni H., Assessment of reinforcement corrosion by means of galvanostatic pulse technique, International Conference on Repair of Concrete Structures. From theory to practice in a Marine Envionment. Svolvaer. Norway 20-30 may 1997. Edited by A. Blankvoll, Norwegian Public Road Administration, pp. 391 -400.

Fraaij A., Bijen J.M., de Haan Y.M., The reaction fly ash in concrete. A critical examination, Cement and concrete research 1989, 19, pp. 235-246. http://dx.doi.org/10.1016/0008-8846(89)90088-4

Gao J., Wu J., Li J., Zhao X., Monitoring of corrosion in reinforced concrete structure using Bragg grating sensing. NDT&E International, 2011, vol. 44, pp. 202–205, http://dx.doi.org/10.1016/j.ndteint.2010.11.011

Gandía-Romero, J.M., Román Bataller, Pablo Monzón, Inmaculada Campos, Eduardo García-Breijo, Manuel Valcuende, Juan Soto, Characterization of embeddable potentiometric thick-film sensors for monitoring chloride penetration in concrete, Sensors and Actuators B: Chemical, Volume 222, January 2016, Pages 407-418. http://dx.doi.org/10.1016/j.snb.2015.07.056

Gandía-Romero, J.M., Campos, I. Valcuende, M. García-Breijo, E., Marcos, M.D., Payá, J. Soto, J., Potentiometric Thick-film sensors for measuring the pH of concrete, Cement and Concrete Composites, Available online 16 February 2016.doi /10.1016/j.cemconcomp.2016.02.006.

Garcés P., Climent L., Zornoza E., Corrosión de Armaduras en Estructuras de Hormigón Armado. Ed. Club Universitario. Alicante 2008, pp. 10-13.

Gonzalez J.A., Control de la corrosión. Estudio y medida por técnicas electroquímicas. Ed. CSIC, 1989, pp. 101-134.

González J.A., Miranda J.M., Consideraciones sobre los posibles mecanismos de corrosión de las estructuras de hormigón armado y sobre los factores que controlan su cinética. Revista de Metalurgia, 2004, 40, pp. 89-100. http://dx.doi.org/10.3989/revmetalm.2004.v40.i2.248

Gonzalez J.A., Molina A., Escudero M.L., Andrade C., Errors in the electrochemical evaluation of very small corrosion rates–I: polarisation resistance method applied to corrosion of steel in concrete, Corros. Sci. 1985, 25, pp. 917–930. http://dx.doi.org/10.1016/0010-938X(85)90021-6

Leung C.K.Y., Wan K.T., Chen L., A Novel Optical Fiber Sensor for Steel Corrosion in Concrete Structures, Sensors 2008, vol. 8, pp. 1960-1976. http://dx.doi.org/10.3390/s8031960

Martínez I., Andrade C., Examples of reinforcement corrosion monitoring by embedded sensors in concrete structures, Cement & Concrete Composites, 2009, vol. 31, pp. 545–554, http://dx.doi.org/10.1016/j.cemconcomp.2009.05.007

Martínez R., Inhibidores de corrosión para hormigón armado, Hormigón preparado, 1998, vol. 38, pp. 48-50.

Rahman S.F.A., Ismail M., Noor N.MD., Bakhtiar H., Embedded Capacitor Sensor for Monitoring Corrosion of Reinforcement in Concrete, Journal of Engineering Science and Technology, 2012, vol. 7, nº 2, pp. 209–218.

Sagoe-Crentsil K. K., Glasser F. P., Analysis of the steel: concrete interface, in: corrosion of reinforcement in concrete, Elsevier Science Publishers Ltd. London, 1990, pp. 74-86.

Slater J., Corrosion of reinforcing steel in concrete: magnitude of the problem. Materials Performance. Jun. 1979, pp. 34-37.

Song Ha-Won, Saraswathy V., Corrosion Monitoring of Reinforced Concrete Structures – A Review, Int. J. Electrochem. Sci., 2007, vol. 2, pp. 1- 28.

Stern M., Weisert E. D., Experimental observations on the relation between polarization resistance and corrosion rate, Proc. Am. Soc. Test. Mater., 1959, 59, pp. 1280.

Van Delinder, L.S. A. Corrosion Basics, An Introduction, NACE 1984.

Zhao X., Gong P., Qiao G., Lu J., Lv X., OU J., Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method. Sensors, 2011, vol. 11, pp. 10798-10819; http://dx.doi.org/10.3390/s111110798

Reference Normative

ASTM C-876, Standard Test Method for Half-Cell Potential for Uncoated Reinforcing Steel in Concrete. American Society of Testing and Materials, Philadelphia, 1987.

UNE 112083 Medición del Potencial Libre en estructuras de H.A, año 2010.

ASTM WK37880, New Test Method for Measuring the Surface Resistivity of Hardened Concrete Using the Wenner Four-electrode Method. American Society of Testing and Materials, 2014.

Patents

Alcañiz M., Bataller R., Gandía-Romero, J.M., Ramón J.E., Soto J., Valcuende M., - Universidad Politécnica de Valencia, “Sensor, red de sensores, método y programa informático para determinar la corrosión en una estructura de hormigón armado”, nº ES2545669 (Patente de Invención concedida con Examen Previo), mayo 06, 2015.

Gandía-Romero, J.M., García-Breijo, E., Soto J., Valcuende M., - Universidad Politécnica de Valencia, “Sensor para la determinación de la profundidad y velocidad de carbonatación del hormigón”, nº ES2518065 (Patente de Invención concedida con Examen Previo), febrero 11, 2015.

Online Sources

The World Corrosion Organization. ‘Now is the Time’. George F. Hays PE., 2010, http://corrosion.org/wco_media/nowisthetime.pdf. [21/01/2016].

Abstract Views

363
Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Licencia Creative Commons This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Universitat Politècnica de València

e-ISSN: 2444-9091 http://dx.doi.org/10.4995/vitruvio