Soil moisture estimation using multi linear regression with terraSAR-X data

G. García, M. Brogioni, V. Venturini, L. Rodriguez, G. Fontanelli, E. Walker, S. Graciani, G. Macelloni


The first five centimeters of soil form an interface where the main heat fluxes exchanges between the land surface and the atmosphere occur. Besides ground measurements, remote sensing has proven to be an excellent tool for the monitoring of spatial and temporal distributed data of the most relevant Earth surface parameters including soil’s parameters. Indeed, active microwave sensors (Synthetic Aperture Radar - SAR) offer the opportunity to monitor soil moisture (HS) at global, regional and local scales by monitoring involved processes. Several inversion algorithms, that derive geophysical information as HS from SAR data, were developed. Many of them use electromagnetic models for simulating the backscattering coefficient and are based on statistical techniques, such as neural networks, inversion methods and regression models. Recent studies have shown that simple multiple regression techniques yield satisfactory results. The involved geophysical variables in these methodologies are descriptive of the soil structure, microwave characteristics and land use. Therefore, in this paper we aim at developing a multiple linear regression model to estimate HS on flat agricultural regions using TerraSAR-X satellite data and data from a ground weather station. The results show that the backscatter, the precipitation and the relative humidity are the explanatory variables of HS. The results obtained presented a RMSE of 5.4 and a R2  of about 0.6


soil moisture; multiple regression; TerraSAR-X

Full Text:



Ahmad, S., Kalra A., Stephen, H. 2010. Estimating soil moisture using remote sensing data: A machine learning approach. Advances in Water Resources, 33(1), 69-80. doi:10.1016/j.advwatres.2009.10.008

Baghdadi, N., Zribi, M., Loumagne, C., Ansart, P., Anguela, T. 2008. Analysis of Terra-SAR-X data and their sensitivity to soil surface parameters over bare agricultural fields. Remote Sensing of Environment, 112(12), 4370-4379. doi:10.1016/j.rse.2008.08.004

Baghdadi, N., Aubert, M., Zribi, M. 2012. Use of TerraSAR-X Data to Retrieve Soil Moisture Over Bare Soil Agricultural Fields. IEEE Geoscience and Remote Sensing Letters, 9(3), 512-516. doi:10.1109/ LGRS.2011.2173155

Balenzano, A., Mattia, F., Satalino, G., Pauwels, V., Snoeij, P. 2012. SMOSAR algorithm for soil moisture retrieval using Sentinel-1 data. Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, July 22-27, pp. 1200-1203. doi:10.1109/IGARSS.2012.6351332

Brocca, L., Morbidelli, R., Melone, F., Moramarco, T. 2007. Soil moisture spatial variability in experimental areas of central Italy. Journal of Hydrology, 333(2- 4), 356-373. doi:10.1016/j.jhydrol.2006.09.004

Brogioni, M., Rodriguez, L., Graciani, S., Fontanelli, G., Muller C., Paloscia, S. 2014. Aplicación de Red Neuronal Artificial sobre imágenes SAR para determinar la humedad del suelo. En: Memorias 2º Congreso Internacional de Hidrología de Llanuras, Santa Fe, Argentina, 23-26 Sept.

Burt, T., Butcher, D. 1985. Topographic controls of soil moisture distributions. Journal of Soil Science, 36(3), 469-486. doi:10.1111/j.1365-2389.1985. tb00351.x

Cohen, J., Cohen, P., West, S., Aiken, L. 2003. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. Third edition. Lawrence Erlbaum Associates, Inc., Publishers, Mahwah, NJ, USA.

Downing, D., Clark J. 1997. Statistics the Easy Way. Third edition. Barron’s E-Z. Barron’s educational series. Easy Way Series, Inc., Hauppauge, New York, U.S.

Dubois, P.C., Zyl, J. van, Engman, T. 1995. Measuring soil moisture with imaging radars. IEEE Transactions on Geoscience and Remote Sensing, 33(4), 915-926. doi:10.1109/36.406677

Engman, E., Chauman, N. 1995. Status of microwave soil moisture measurements with remote sensing. Remote Sensing of Environment, 51(1), 189-198. doi:10.1016/0034-4257(94)00074-W

Forte Lay J., Scarpati, O., Capriolo A. 2008. Precipitation variability and soil water content in Pampean Flatlands (Argentina). Geofísical International, 47(4), 341-354.

Fox, J. 2002. An R and S-PLUS Companion to Applied Regression. SAGE Publications. Inc. Thousand Oaks, CA, USA.

Fung, A.K., Li, Z., Chen, K.S. 1992. Backscattering from a randomly rough dielectric surface. IEEE Transactions on Geoscience and Remote Sensing. 30(2), 356-369. doi:10.1109/36.134085

Fung, A., 1994. Microwave Scattering and Emission Models and their Applications. Artech House, Inc., Norwood, USA.

Glantz, S., Slinker, B. 1990. Primer of Applied Regression and Analysis of Variance. The McGrawHill Companies, Inc., New York, NY, USA.

Grayson, R.B., Western, A.W., Chiew, F.H.S., Blöschl, G. 1997. Preferred states in spatial soil moisture patterns: local and nonlocal controls. Water Resources Research, 33(12), 2897-2908. doi:10.1029/97wr02174

Harrell, F.E. 2001. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. Springer Series in Statistics. Springer-Verlag New York, Inc., New York, NY, USA. doi:10.1007/978-1-4757-3462-1

Helsel, D., Hirsch, R. 2002. Statistical Methods in Water Resources Techniques of Water Resources Investigations, Book 4, Chapter A3. U.S. Geological Survey, 295-297.

Kornelsen, K.C., Coulibaly, P. 2013. Advances in soil moisture retrieval from synthetic aperture radar hydrological applications. Journal of Hydrology, 476, 460-489. doi:10.1016/j.jhydrol.2012.10.044

Kseneman, M., Gleich, D., Potočnik, B. 2012. Soilmoisture estimation from TerraSAR-X data using neural networks. Machine Vision and Applications, 23(5), 937-952. doi:10.1007/s00138-011-0375-3

Krepper C., Ventunini V. 2009. Assessing interannual water balance of La Plata river basin. Atmósfera, 22(4), 387-398.

Lievens, H., Verhoest, N.E.C. 2012. Spatial and temporal soil moisture estimation from Radarsat-2 imagery over Flevoland, The Netherlands. Journal of Hydrology, 456-457, 44-56. doi:10.1016/j. jhydrol.2012.06.013

Marquardt, D. 1970. Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics, 12(3), 591-612. doi:10.1 080/00401706.1970.10488699

Mattia, F., Satalino, G., Dente, L., Pasquariello, G. 2006. Using a priori information to improve soil moisture retrieval from ENVISAT ASAR AP data in semiarid regions. IEEE Transactions on Geoscience and Remote Sensing, 44(4), 900-912. doi:10.1109/ TGRS.2005.863483

Martínez García, G., Pachepsky, Y.A., Vereecken, H. 2014. Effect of soil hydraulic properties on the relationship between the spatial mean and variability of soil moisture. Journal of Hydrology, 516, 154- 160. doi:10.1016/j.jhydrol.2014.01.069

Montgomery, D., Peck, E. 1992. Introduction to Linear Regression. Analysis. Second edition. A Wiley-Inter science Publication. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics Section. John Wiley & Sons, Inc., New York, NY, USA.

Notarnicola, C., Angiulli, M., Posa, F. 2008. Soil moisture retrieval from remotely sensed data: Neural network approach versus Bayesian method. IEEE Transactions on Geoscience and Remote Sensing, 46(2), 547-557. doi:10.1109/TGRS.2007.909951

Oh, Y., Sarabandi, K., Ulaby, F.T. 1992. An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 370-381. doi:10.1109/36.134086

Parton, W. 1984. Predicting soil temperatures in shortgrass steppe. Soil Science. 138(2), 93-101. doi:10.1097/00010694-198408000-00001

Paloscia, S., Pampaloni, P., Pettinato, S., Santi, E. 2008. A Comparison of Algorithms for Retrieving Soil Moisture from ENVISAT/ASAR Images. IEEE Transactions on Geoscience and Remote Sensing, 46(10), 3274-3284. doi:10.1109/TGRS.2008.920370

Paloscia, S., Pampaloni, P., Pettinato, S., Santi, E. 2010. Generation of soil moisture maps from ENVISAT/ ASAR images in mountainous areas: a case study. International Journal of Remote Sensing, 31(9), 2265-2276. doi:10.1080/01431160902953891

Pasolli, L., Notarnicola, C., Bruzzone, L., Bertoldi, G., Della Chiesa, S., Hell, V., Niedrist, G., Tappeiner,U., Zebisch, M., Del Frate, F., Vaglio Laurin, G. 2011. Estimation of Soil Moisture in an Alpine Catchment with RADARSAT2 Images. Applied and Environmental Soil Science, 2011(175473). doi:10.1155/2011/175473

Pasolli, L., Notarnicola, C., Bruzzone, L. 2012. MultiObjective Parameter Optimization in Support Vector Regression: General Formulation and Application to the Retrieval of Soil Moisture From Remote Sensing Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(5), 1495-1508. doi:10.1109/JSTARS.2012.2197178

Pierdicca N., Pulvirenti L., Pace G. 2014. A Prototype Software Package to Retrieve Soil Moisture from Sentinel 1 Data by Using a Bayesian Multitemporal Algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(1), 153-166. doi:10.1109/JSTARS.2013.2257698

Qiu, Y., Fu, B., Wang, J., Chen, L., Meng, Q., Zhang, Y. 2010. Spatial prediction of soil moisture content using multiple-linear regressions in a gully catchment of Loess Plateau, China. Journal of Arid Environments, 74(2), 208-220. doi:10.1016/j. jaridenv.2009.08.003

Ranney, K.J., Niemann, J.D., Lehman, B.M., Green, T.R., Jones, A.S. 2015. A method to downscale soil moisture to fine resolutions using topographic, vegetation, and soil data. Advances in Water Resources, 76, 81-96. doi:10.1016/j. advwatres.2014.12.003

Said, S., Kothyari, U., Arora, M., 2008. ANN-based soil moisture retrieval over bare and vegetated areas using ERS-2 SAR data. Journal of Hydrologic Engineering, 13(6), 461-475. doi:10.1061/ (ASCE)1084-0699(2008)13:6(461)

Shi, J., Wang, J., Hsu, A.Y., O’Neil, P.E., Engman, E.T. 1997. Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data. IEEE Transactions on Geoscience and Remote Sensing. 35(5), 1254-1266. doi:10.1109/36.628792

Takagi, K., Lin, H.S. 2011. Temporal dynamics of soil moisture spatial variability in the shale hills critical zone observatory. Vadose Zone Journal, 10(3), 832- 842. doi:10.2136/vzj2010.0134

Tromp-van Meerveld, H.J., McDonnel, J.J. 2006. On the interrelations between topography, soil depth, soil moisture, transpiration rates and species distribution at the hillslope scale. Advances in Water Resources, 29(2), 293-310. doi:10.1016/j. advwatres.2005.02.016

Ulaby, F., Moore, R., Fung, A. 1982. Microwave Remote Sensing, Active and Passive, Volume I: Radar Remote Sensing: Fundamentals and Radiometry. Artech House, Inc. Norwood, USA.

Western, A.W., Grayson, R.B., Blöschl, G, Willgoose, G., McMahon, T.A. 1999. Observed spatial organization of soil moisture and its relation to terrain indices. Water Resources Research, 35(3), 797-810. doi:10.1029/1998WR900065

Weisberg, S. 2005. Applied Linear Regression, Third Edition. Hoboken NJ: Wiley. doi:10.1002/0471704091

Zhu, Q., Lin, H. 2011. Influences of soil, terrain, and crop growth on soil moisture variation from transect to farm scales. Geoderma, 163(1-2), 45-54. doi:10.1016/j.geoderma.2011.03.015

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM

Licencia Creative Commons

This journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Universitat Politècnica de València

Official Journal of the Spanish Association of Remote Sensing

EISSN: 1988-8740    ISSN: 1133-0953