Using low density LiDAR data to map Mediterranean forest characteristics by means of an area-based approach and height threshold analysis

J. Guerra-Hernández, M. Tomé, E. González-Ferreiro

Abstract

This study reports progress in forest inventory methods involving the use of low density airborne LiDAR data and an area-based approach (ABA). It also emphasizes the usefulness of the Spanish countrywide LiDAR dataset for mapping forest stand attributes in Mediterranean stone pine forest characterized by complex orography. Lowdensity airborne LiDAR data (0.5 first returns m–2) was used to develop individual regression models for a set of forest stand variables in different types of forest. LiDAR data is now freely available for most of the Spanish territory and is provided by the Spanish National Aerial Photography Program (Plan Nacional de Ortofotografía Aérea, PNOA). The influence of height thresholds (MHT: Minimun Height Threshold and BHT: Break Height Threshold) used in extracting LiDAR metrics was also investigated. The best regression models explained 61-85%, 67-98% and 74-98% of the variability in ground-truth stand height, basal area and volume, respectively. The magnitude of error for predicting structural vegetation parameters was higher in closed deciduous and mixed forest than in the more homogeneous coniferous stands. Analysis of height thresholds (HT) revealed that these parameters were not particularly important for estimating several forest attributes in the coniferous forest; nevertheless, substantial differences in volume modelling were observed when the height thresholds (MHT and BHT) were increased in complex structural vegetation (mixed and deciduous forest). A metric-by-metric analysis revealed that there were significant differences in most of the explanatory variables computed from different height thresholds (HBT and MHT).The best models were applied to the reference stands to yield spatially explicit predictions about the forest resources. Reliable mapping of biometric variables was implemented to facilitate effective and sustainable management strategies and practices in Mediterranean Forest ecosystems.


Keywords

Airborne laser scanning data; forest inventory; forest attribute mapping; remote sensing; forest modelling

Full Text:

PDF

References

Alberti, G., Boscutti, F., Pirotti, F., Bertacco, C., De Simon, G., Sigura, M., Cazorzi, F., Bonfanti, P. 2013. A LiDAR-based approach for a multi-purpose characterization of Alpine forests: an Italian case study. iForest-Biogeosciences and Forestry, 6(3), 156.

Andersen, H.E., McGaughey, R.J., Reutebuch, S.E. 2005. Estimating forest canopy fuel parameters using LIDAR data. Remote sensing of Environment, 94(4), 441-449. http://dx.doi.org/10.1016/j. rse.2004.10.013

Belsley, D.A., Kuh, E., Welsch, R.E. 2005. Regression diagnostics: Identifying influential data and sources of collinearity. New Jersey: John Wiley & Sons.

Clark, M.L., Clark, D.B., Roberts, D.A. 2004. Smallfootprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape. Remote Sensing of Environment, 91(1), 68-89. http:// dx.doi.org/10.1016/j.rse.2004.02.008

Coops, N.C., Hilker, T., Wulder, M.A., St-Onge, B., Newnham, G., Siggins, A., Trofymow, J. T. 2007. Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR. Trees, 21(3), 295-310. http://dx.doi.org/10.1007/s00468-006- 0119-6

Ediriweera, S., Pathirana, S., Danaher, T., Nichols, D. 2014. LiDAR remote sensing of structural properties of subtropical rainforest and eucalypt forest in complex terrain in North-eastern Australia. Journal of Tropical Forest Science, 26(3), 397-408

Estornell, J., Ruiz, L.A., Velázquez-Martí, B., Hermosilla, T. 2011. Analysis of the factors affecting LiDAR DTM accuracy in a steep shrub area. International Journal of Digital Earth, 4(6), 521- 538. http://dx.doi.org/10.1080/17538947.2010.533 201

García, M., Riaño, D., Chuvieco, E., Danson, F.M. 2010. Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sensing of Environment, 114(4), 816-830. http://dx.doi. org/10.1016/j.rse.2009.11.021

Gonçalves-Seco, L., González-Ferreiro, E., DiéguezAranda, U., Fraga-Bugallo, B., Crecente, R., Miranda, D. 2011. Assessing the attributes of highdensity Eucalyptus globulus stands using airborne laser scanner data. International Journal of Remote Sensing, 32(24), 9821-9841. http://dx.doi.org/10.10 80/01431161.2011.593583

González-Ferreiro, E., Diéguez-Aranda, U., BarreiroFernández, L., Buján, S., Barbosa, M., Suárez, J.C., Bye, I.J., Miranda, D. 2013. A mixed pixeland region-based approach for using airborne laser scanning data for individual tree crown delineation in Pinus radiata D. Don plantations. International Journal of Remote Sensing, 34(21), 7671-7690. http://dx.doi.org/10.1080/01431161.2013.823523

González-Ferreiro, E., Diéguez-Aranda, U., CrecenteCampo, F., Barreiro-Fernández, L., Miranda, D., Castedo-Dorado, F. 2014. Modelling canopy fuel variables for Pinus radiata D. Don in NW Spain with low-density LiDAR data. International journal of wildland fire, 23(3), 350-362. http://dx.doi. org/10.1071/WF13054 González-Ferreiro, E., Diéguez-Aranda, U., Miranda, D. 2012. Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities. Forestry, 85(2), 281-292. http:// dx.doi.org/10.1093/forestry/cps002

González-Olabarria, J.-R., Rodríguez, F., FernándezLanda, A., Mola-Yudego, B. 2012. Mapping fire risk in the Model Forest of Urbión (Spain) based on airborne LiDAR measurements. Forest Ecology and Management, 282, 149-156. http://dx.doi. org/10.1016/j.foreco.2012.06.056

Görgens, E.B. 2015. LiDAR technology applied to vegetation quantification and qualification. Doctoral Thesis. Universidade de São Paulo

Guerra-Hernández, J., González-Ferreiro, E., JuradoVarela, A., Tomé, M. 2015. Uso de LiDAR aerotransportado para la estimación de variables forestales de un bosque Mediterráneo en el suroeste de España (Extremadura). In: Teledetección: Humedales y Espacios Protegidos. XVI Congreso de la Asociación Española de Teledetección. Sevilla, Spain, 21-23 October. pp 379-382.

Hall, S.A., Burke, I.C., Box, D.O., Kaufmann, M.R., Stoker, J.M. 2005. Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests. Forest Ecology and Management, 208(1), 189-209. http://dx.doi. org/10.1016/j.foreco.2004.12.001

Järnstedt, J., Pekkarinen, A., Tuominen, S., Ginzler, C., Holopainen, M., Viitala, R. 2012. Forest variable estimation using a high-resolution digital surface model. ISPRS Journal of Photogrammetry and Remote Sensing, 74, 78-84. http://dx.doi. org/10.1016/j.isprsjprs.2012.08.006

Jensen, J.L.R., Humes, K.S., Conner, T., Williams, C.J., DeGroot, J. 2006. Estimation of biophysical characteristics for highly variable mixed-conifer stands using small-footprint lidar. Canadian Journal of Forest Research, 36(5), 1129-1138. http://dx.doi. org/10.1139/x06-007

Lindberg, E., Hollaus, M. 2012. Comparison of methods for estimation of stem volume, stem number and basal area from airborne laser scanning data in a hemi-boreal forest. Remote Sensing, 4(4), 1004- 1023. http://dx.doi.org/10.3390/rs4041004

Maltamo, M., Næsset, E., Vauhkonen, J. 2014. Forestry applications of airborne laser scanning. Dordrecht: Springer. http://dx.doi.org/10.1007/978-94-017- 8663-8

McGaughey, R. 2014. FUSION/LDV: software for LIDAR Data Analysis and Visualization. In: US Department of Agriculture, F.S., Pacific Northwest Research Station, Seattle, USA. 123 pp. (Ed.).

Means, J., Acker S., Fitt, B., Renslow, M., Emerson, L., Hendrix, C. 2000. Predicting forest stand characteristics with airborne scanning LiDAR. Photogrammetric Engineering and Remote Sensing, 66(11), 1367-1371.

Montaghi, A., Corona, P., Dalponte, M., Gianelle, D., Chirici, G., Olsson, H. 2013. Airborne laser scanning of forest resources: an overview of research in Italy as a commentary case study. International Journal of Applied Earth Observation and Geoinformation, 23(1), 288-300. http://dx.doi.org/10.1016/j. jag.2012.10.002

Montagnoli, A., Fusco, S., Terzaghi, M., Kirschbaum, A., Pflugmacher, D., Cohen, W. B., Chiatante, D. 2015. Estimating forest aboveground biomass by low density lidar data in mixed broad-leaved forests in the Italian Pre-Alps. Forest Ecosystems, 2(1), 1-9. http://dx.doi.org/10.1186/s40663-015-0035-6

Nakai, T., Sumida, A., Kodama, Y., Hara, T., Ohta, T. 2010. A comparison between various definitions of forest stand height and aerodynamic canopy height. Agricultural and forest meteorology, 150(9), 1225-1233. http://dx.doi.org/10.1016/j. agrformet.2010.05.005

Næsset, E. 2002. Predicting forest stand characteristics with airborne scanning laser using a practical twostage procedure and field data. Remote Sensing of Environment, 80(1), 88-99. http://dx.doi. org/10.1016/S0034-4257(01)00290-5

Næsset, E., Gobakken, T. 2008. Estimation of aboveand below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sensing of Environment, 112(6), 3079-3090. http:// dx.doi.org/10.1016/j.rse.2008.03.004

Næsset, E., 2011. Estimating above-ground biomass in young forests with airborne laser scanning. International Journal of Remote Sensing, 32(2), 473- 501. http://dx.doi.org/10.1080/01431160903474970

Nyström, M., Holmgren, J., Olsson, H. 2012. Prediction of tree biomass in the forest–tundra ecotone using airborne laser scanning. Remote Sensing of Environment, 123, 271-279. http://dx.doi. org/10.1016/j.rse.2012.03.008

Raber, G.T., Jensen, J.R., Schill, S.R., Schuckman, K. 2002. Creation of digital terrain models using an adaptive lidar vegetation point removal process. Photogrammetric engineering and remote sensing, 68(12), 1307-1314. R Core Team. 2014.

R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Ruiz, L.A., Hermosilla, T., Mauro, F., Godino, M. 2014. Analysis of the Influence of Plot Size and LiDAR Density on Forest Structure Attribute Estimates. Forests, 5(5), 936-951. http://dx.doi.org/10.3390/ f5050936 SAS Institute Inc. 2004.

SAS/STAT® 9.1 User’s Guide. SAS Institute Inc, Cary, NC.

Stephens, P.R., Watt, P.J., Loubser, D., Haywood, A., Kimberley, M.O. 2007. Estimation of carbon stocks in New Zealand planted forests using airborne scanning LiDAR. In: Proceedings ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, Finland, 12-14 September, pp. 389-394.

Treitz, P., Lim, K., Woods, M., Pitt, D., Nesbitt, D., Etheridge, D. 2012. LiDAR Sampling Density for Forest Resource Inventories in Ontario, Canada. Remote Sensing, 4(4), 830-848. http://dx.doi. org/10.3390/rs4040830

Valbuena, R., Mauro, F., Arjonilla, F.J., Manzanera, J.A. 2011. Comparing airborne laser scanning-imagery fusion methods based on geometric accuracy in forested areas. Remote Sensing of Environment, 115(8), 1942-1954. http://dx.doi.org/10.1016/j. rse.2011.03.017

Van Leeuwen, M., Nieuwenhuis, M. 2010. Retrieval of forest structural parameters using LiDAR remote sensing. European Journal of Forest Research, 129(4), 749-770. http://dx.doi.org/10.1007/s10342- 010-0381-4

Abstract Views

699
Metrics Loading ...

Metrics powered by PLOS ALM


 

Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Generation of high-resolution fuel model maps from discrete airborne laser scanner and Landsat-8 OLI: A low-cost and highly updated methodology for large areas
Eva Marino, Pedro Ranz, José Luis Tomé, Miguel Ángel Noriega, Jessica Esteban, Javier Madrigal
Remote Sensing of Environment  vol: 187  first page: 267  year: 2016  
doi: 10.1016/j.rse.2016.10.020



Licencia Creative Commons

This journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Universitat Politècnica de València

Official Journal of the Spanish Association of Remote Sensing

e-ISSN: 1988-8740    ISSN: 1133-0953