Mapping of fuels and fire potentials in the African Continent using FCCS
Submitted: 2014-04-16
|Accepted: 2015-01-21
|Published: 2015-06-26
Downloads
Keywords:
Africa, FCCS, fuelbed, fuel map
Supporting agencies:
Universidad de Alcalá
Ministerio de Educación
Cultura y Deporte de España
Abstract:
This paper presents the methodology used for the development of a fuel map for the African Continent, using FCCS (Fuel Characteristic Classification System). The cartography of the fuelbeds was based on global cartographic information obtained from remote sensing imaging, and the variables associated to each fuelbed were extracted from existing vegetation databases. A total of 75 fuelbeds were developed, and from the variables assigned to each of them, different Fire Potentials were calculated using default environmental variables. These potentials allow the estimation of surface fire behavior, crown fire and available fuel, depending on the characteristics of the existing vegetation.
References:
Andreae, M.O., Atlas, E.H.C., Cofer, III W.R., Harris, G.W., Helas, G., Koppmann, R., Lacaux, J., Ward, D. 1996. Trace gas and aerosol emissions from savanna fires. En: J. C. Levine (Ed.), Biomass Burning and Global Change (Vol. I, pp. 278-295). Cambridge, Mass.: MIT Press.
Arino, O., Gross, D., Ranera, F., Bourg, L., Leroy, M., Bicheron, P., Latham, J., Di Gregorio, A., Brockman, C., Witt, R., Defourny, P., Vancutsem, C., Herold, M., Sambale, J., Achard, F., Durieux, L., Plummer, S., Weber, J.L. 2007. GlobCover: ESA service for global land cover from MERIS. En: Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International, Barcelona, Spain, pp. 2412-2415.
Burgan, R. E., Klaver, R. W., Klaver, J. M., 1998. Fuel models and fire potential from satellite and surface observations. International Journal of Wildland Fire, 8(3), 159-170. http://dx.doi.org/10.1071/WF9980159
Carroll, M., Townshend, J., Hansen, M., DiMiceli, C., Sohlberg, R., Wurster, K. 2011. MODIS Vegetative Cover Conversion and Vegetation Continuous Field. En: B. Ramachandran, C. O. Justice & M. J. Abrams (Eds.), Land Remote Sensing and Global Environmental Change. New York: Springer, pp. 725-745.
Chuvieco, E., Aguado, I., Yebra, M., Nieto, H., Salas, J., Martín, M. P., Vilar, L., Martínez, J., Martín, S., Ibarra, P., de la Riva, J., Baeza, J., Rodríguez, F., Molina, J. R., Herrera, M. A., Zamora, R. 2010. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling, 221(1), 46-58. http://dx.doi.org/10.1016/j.ecolmodel.2008.11.017
Cochrane, M. A., Schulze, M. D. 1999. Fire as a recurrent event in tropical forests of the Eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica, 31(1), 2-16. http://dx.doi.org/10.2307/2663955
Collins, T. W. 2005. Households, forests, and fire hazard vulnerability in the American West: A case study of a California community. Environmental Hazards, 6(1), 23-37. http://dx.doi.org/10.1016/j.hazards.2004.12.003
Deeming, J. E., Lancaster, J. W. Fosberg, M. A., Furman,W. R., Schroeder, M. J., 1972. The National Fire-Danger Rating System (Research Paper RM-84). Fort Collins, CO: USDA Forest Service, Rocky Mountain Forest and Range Experiment Station.
Di Gregorio, A., Jansen, L. J. M. 1998. Land Cover Classification System (LCCS): Classification Concepts and User Manual (GCP/RAF/287/ITA Africover - East Africa Project and Soil Resources, Management and Conservation Service). Rome: Environment and Natural Resources Service.
Giglio, L., Randerson, J. T., van der Werf, G. R. 2013. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). Journal of Geophysical Research:Biogeosciences, 118(1), 317-328. http://dx.doi.org/10.1002/jgrg.20042
Komarek, E. V. 1972. Lightning and fire ecology in Africa. En: 11th Annual Tall Timber Fire Ecology Conference:fire in Africa, Tallahassee, FL., 473-511.
Morfín-Ríos, J. E., Alvarado-Celestino, E., Jardel-Peláez, E. J., Vihnanek, R. E., Wright, D. K., Michel-Fuentes, J. M., Wright, C. S., Ottmar, R. D., Sandberg, D. V., Nájera-Díaz, A. 2008. Photo series for quantifying forest fuels in Mexico: montane subtropical forests of the Sierra Madre del Sur and temperate forests and montane shrubland of the northern Sierra Madre Oriental. Seattle: Pacific Wildland Fire Sciences Laboratory Special Pub. Nº 1; University of Washington, College of Forest Resources.
Nunes, M. C. S., Vasconcelos, M. J., Pereira, J. M. C., Dasgupta, N., Alldredge, R. J., Rego, F. C. 2005. Land cover type and fire in Portugal: do fires burn land cover selectively? Landscape Ecology, 20(6), 661-673. http://dx.doi.org/10.1007/s10980-005-0070-8
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D’Amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., Kassem, K. R. 2001. Terrestrial Ecoregions of the World: A New Map of Life on arth. BioScience,51(11), 933-938. http://dx.doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
Ottmar, R. D., Sandberg, D. V., Riccardi, C. L., Prichard, S. J. 2007. An overview of the Fuel Characteristic Classification System - Quantifying, classifying, and creating fuelbeds for resource planning. Canadian Journal of Forest Research, 37(12), 2383-2393. http://dx.doi.org/10.1139/X07-077
Ottmar, R. D., Vihnanek, R. E., Miranda, H. S., Sato, M. N., Andrade, S. M. A. 2001. Stereo Photo series for quantifying cerrado fuels in Central Brazil – Volume I (General Technical Report PNW-GTR-519). Seattle: Pacific Norhtwest Research Station, USDA Forest Service.
Pettinari, M. L., Chuvieco, E., 2013. Association between fire causative agents within land cover types and global fire occurrence. En: J. M. Krisp, L. Meng, R. Pail & U. Stilla (Eds.), Earth Observation of Global Changes (EOGC), Berlin Heidelberg: Springer-Verlag, pp. 269-283. http://dx.doi.org/10.1007/978-3-642-32714-8_18
Pettinari, M. L., Ottmar, R. D., Prichard, S. J., Andreu, A. G., Chuvieco, E. 2014. Development and mapping of fuel characteristics and associated fire potentials for South America. International Journal of Wildland Fire, 23(5), 643-654. http://dx.doi.org/10.1071/WF12137
Prichard, S. J., Ottmar, R. D., Anderson, G. K. 2005.Consume 3.0 User’s Guide. Seattle, WA: USDA Forest Service, Pacific Northwest Research Station. http://www.fs.fed.us/pnw/fera/research/smoke/consume/consume30_users_guide.pdf
Prichard, S. J., Sandberg, D. V., Ottmar, R. D., Eberhardt, E., Andreu, A. G., Eagle, P., Swedin, K. 2013. Fuel Characteristic Classification System Version 3.0: Technical Documentation (General Technical Report PNW-GRT-887). Portland, OR: USDA Forest Service, Pacific Northwest Research Station.
Riccardi, C. L., Ottmar, R. D., Sandberg, D. V., Andreu, A., Elman, E., Kopper, K., Long, J. 2007a. The fuelbed: a key element of the Fuel Characteristic Classification System. Canadian Journal of Forest Research, 37(12), 2394-2412. http://dx.doi.org/10.1139/X07-143
Riccardi, C. L., Prichard, S. J., Sandberg, D. V., Ottmar, R. D. 2007b. Quantifying physical characteristics of wildland fuels using the Fuel Characteristic Classification System. Canadian Journal of Forest Research, 37(12), 2413-2420. http://dx.doi.org/10.1139/X07-175
Roberts, G. J., Wooster, M. J. 2008. Fire detection and fire characterization over Africa using Meteosat SEVIRI. IEEE Transactions on Geoscience and Remote Sensing, 46(4), 1200-1218. http://dx.doi.org/10.1109/TGRS.2008.915751
Rothermel, R. C. 1983. How to predict the spread and intensity of forest and range fires (INT-143): US Department of Agriculture - Forest Service.
Sandberg, D. V., Riccardi, C. L., Schaaf, M. D. 2007. Reformulation of Rothermel’s wildland fire behavior model for heterogeneous fuelbeds. Canadian Journal of Forest Research, 37(12), 2438-2455. http://dx.doi.org/10.1139/X07-094
Scott, J. H., Burgan, R. E. 2005. Standard fire behavior fuel models: a comprehensive set for use with Rothermel’s Surface Fire Spread Model (RMRS-GTR-153). Fort Collins, CO: USDA Forest Service.
Simard, M., Pinto, N., Fisher, J. B., Baccini, A. 2011.Mapping forest canopy height globally with spaceborne lidar. Journal of Geophysical Research, 116(G04021), 12 pp.
Thonicke, K., Spessa, A., Prentice, I. C., Harrison, S. P., Dong, L., Carmona-Moreno, C. 2010. The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. Biogeosciences, 7, 1991-2011. http://dx.doi.org/10.5194/bg-7-1991-2010
Trollope, W. S. W. 1996. Biomass burning in the Savannas of Southern Africa with particular reference to the Kruger National Park in South Africa. En J. C. Levine (Ed.), Biomass burning and Global Change. Cambridge, Mass.: MIT Press, Vol. I, pp. 260-269.Trollope, W. S. W.,
Trollope, L. A. 2010. Fire effects and management in African grasslands and savannas. En: V. R. Squires (Ed.), Range and Animal Sciences and Resources Management, Vol. II, pp. 121-145, EOLSS.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., Arellano, Jr. A. F., 2006. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics, 6, 3423-3441. http://dx.doi.org/10.5194/acp-6-3423-2006
van der Werf, G. R., Randerson, J. T., Giglio, L.,Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., van Leeuwen, T. T. 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmospheric Chemistry and Physics, 10, 11707-11735. http://dx.doi.org/10.5194/acp-10-11707-2010
Xiao-rui, T., McRae, D. J., Li-fu, S., Ming-yu, W.2005. Fuel classification and mapping from satellite imagines. Journal of Forestry Research, 16(4), 311-316. http://dx.doi.org/10.1007/BF02858198