Assembly plant simulation to support decision-making n Layout Design considering safety issues. A case study.

Aída Sáez Más, José P. García-Sabater, Joan Morant Llorca, Julien Maheut


This paper presents a simulation model that has been created to support decision-making during the layout redesign of an engine and transmission assembly plant in the automotive sector. The plant requires a new layout and supply logistic due to an increase in its complexity and daily production. Discrete event simulation has been used to validate an initial proposal and to propose different what-if scenarios of layout and operations management systems. These scenarios will be evaluated regarding materials flow generated throughout the plants. The main focus of the decision process was focused on safety issues related to the material handling. The simulation model and its description have been done according to the methodology proposed in Sáez Más, García Sabater, Morant Llorca, y Maheut (2016), where the simulation model is focus as a 4-layer architecture (network, logic, database and visual reality). The achieved model is very flexible and modular, and it allows to save modelling time because of the parameterize of different combinations in layout and operations management.


Layout design; Material flow; Assembly plant; Discrete event simulation (DES); 4-layer architecture; Forklift free Area

Full Text:



Agnetis, A., Pacifici, A., Rossi, F., Lucertini, M., Nicoletti, S., Nicolò, F., … Pesaro, E. (1997). Scheduling of flexible flow lines in an automobile assembly plant. European Journal of Operational Research, 97(2), 348–362.

Banks, J., y Banks, J.; Carson, J. S.; Nelson, B.; Nicol, D. (2004). Discrete-Event System Simulation. (J. Banks, J. Carson, B. L. Nelson, y D. Nicol, Eds.) (4th ed.). Prentice Hall in an imprint of Pearson.

Bauters, K., Govaert, T., Limère, V., y Landeghem, H. Van. (2015). Forklift Free Factory : a simulation model to evaluate different transportation systems in the automotive industry. International Journal of Computer Aided Engineering and Technology, 7(2), 238–259.

Bennett, B. S. (1995). Simulation fundamentals. Prentice Hall International, Hertfordshire (UK) Ltd.

Campuzano, F., y Mula, J. (2011). Supply Chain Simulation: A System Dynamics Approach for Improving Performance.

Chan, F. T. S., y Chan, H. K. (2005). Design of a PCB plant with expert system and simulation approach. Expert Systems with Applications, 28(3), 409–423.

Cottyn, J., Govaert, T., y Van Landeghem, H. (2008). Alternative line delivery strategies support: A forklift free transition in a high product vareity environment. En 11th International Workshop on Harbor Maritime Multimodal Logistics Modeling and Simulation (HMS 2008) (pp. 55-60). DIPTIM University.

Dias, L. M. S., Pereira, G. A. B., Vik, P., y Oliveira, J. A. (2014). Layout and process optimisation: using computer–aided design (CAD) and simulation through an integrated systems design tool. International Journal of Simulation and Process Modelling, 9(1), 46–62.

Garcia-Sabater, J. P., Maheut, J., y Garcia-Sabater, J. J. (2012). A two-stage sequential planning scheme for integrated operations planning and scheduling system using MILP: The case of an engine assembler. Flexible Services and Manufacturing Journal, 24(2), 171–209.

Garcia-Sabater, J. P., Maheut, J., y García-Sabater, J. J. (2009). A decision support system for aggregate production planning based on MILP:A case study from the automotive industry. 2009 International Conference on Computers and Industrial Engineering, CIE 2009, 366–371.

Govaert, T. (2011). The feasibility of a Forklift Free Factory : a simulation model in the automotive industry. (Tesina de máster). Recuperado de Recuperado el 10-07-2016

Longo, F., Mirabelli, G., y Papoff, E. (2005). Material Flow Analysis and Plant Lay-Out Optimization of a Manufacturing System. 2005 IEEE Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, 5(1), 107–116.

Maheut, J., Morant Llorca, J., y Garcia-Sabater, J. P. (2015). Estudio de la configuración productiva de una planta de pre-montaje de unidades aplicando parámetros de presencia máxima de opciones, 6(1), 1–21.

MHI. (2016). Material Handling Industry: Glossary. Recuperado de Recuperado el 17-03-2016.

Michalos, G., Makris, S., y Mourtzis, D. (2012). An intelligent search algorithm-based method to derive assembly line design alternatives. International Journal of Computer Integrated Manufacturing.

Negahban, A., y Smith, J. S. (2014). Simulation for manufacturing system design and operation: Literature review and analysis. Journal of Manufacturing Systems, 33(2), 241–261.

Sáez Más, A., García Sabater, J. P., Morant Llorca, J., y Maheut, J. (2016). Data-driven simulation methodology using DES 4-layer architecture. Working Papers on Operations Management, 7(22), 30.

Sly, D., Grajo, E., y Montreuil, y B. (1996). Layout design and analysis software.IIE Solutions, 28(7), 18-25.

Sly, D. P. (1996). A systematic approach to factory layout and design with FactoryPLAN, FactoryOPT, and FactoryFLOW. En Proceedings of the 28th conference on Winter simulation (pp. 584-587). IEEE Computer Society.

Tjahjono, B., y Fernández, R. (2008). Practical approach to experimentation in simulation study. En Proceedings of the 40th Conference on Winter Simulation (pp. 1981-1988). Winter Simulation Conference.

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Licencia Creative Commons

This journal is licensed under a Creative Commons Attribution 4.0 International License.

Universitat Politècnica de València

e-ISSN: 1989-9068